“. . . according to the Yoga Sutra (3.1), the term [Bandha] refers to the ‘binding’ of consciousness to a particular object or locus (desha), which is the very essence of concentration.”
Georg Feuerstein



BandhaYoga QuickQuizzes


QuickQuiz #3 - Downward Facing Dog Pose


An excerpt from "Yoga Mat Companion 1 - Anatomy for Vinyasa Flow and Standing Poses".

An excerpt from "Yoga Mat Companion 4 - Anatomy for Arm Balances and Inversions".

Your Glutes and Lats in Bird Dog Pose

Hello Friends,

Once you learn the individual muscles, then it’s time to look at how they function together during movement and in your asanas. Use your knowledge to develop cues to refine and deepen your poses. Groups of muscles, ligaments and fascia that function together are known as “subsystems”. In this post we examine the posterior oblique subsystem in Bird Dog pose.

The posterior oblique subsystem is comprised of the gluteus maximus on one side of the body and the latissimus dorsi on the other side, with the thoracolumbar fascia between (as shown in the inset illustration). These structures operate synergistically with other groups of muscles, ligaments and fascia, particularly during rotational movements such as a golf swing. 

Figure 1 illustrates how the fibers of the gluteus maximus and opposite side latissimus dorsi run perpendicular to the sacroiliac joint. Co-contracting these two muscles can be used to tension the thoracolumbar fascia, thus stabilizing the sacroiliac joint. Click here to learn more about the thoracolumbar fascia and its important role in core stability.

Bird Dog is an excellent pose for strengthening the core and engaging the posterior oblique subsystem. A good cue for activating the latissimus dorsi muscle in this pose is to straighten the arm forward and then imagine pushing down with the hand against an immoveable object (as shown with the dotted arrow). Alternatively, imagine pulling down on a rope with the forward hand. Combine this isometric contraction of the lats with engaging the gluts on the side of the lifted leg to augment the stabilizing effect on the SI joint.



Figure 1: The posterior oblique subsystem and sacroiliac joint in Bird Dog Pose.


Click here to check our our previous post, "Connect Your Cuff to Your Core in Forearm Plank" and see how this subsystem works in plank pose. With this in mind, what other poses can be used to activate the posterior oblique myofascial subsystem? Place your answer in the comment section below…

An excerpt from "Yoga Mat Companion 3 - Anatomy for Backbends and Twists".

An excerpt from "Yoga Mat Companion 3 - Anatomy for Backbends and Twists".

Thanks for stopping by--I hope you're enjoying learning about biomechanical concepts like the myofascial subsystems and how they work in your poses. Stay tuned for the next post when I'll go over the hamstring connection to the pelvis and lumbar. Click here to browse through the Bandha Yoga book series on anatomy, biomechanics and physiology for yoga.


All the Best,


Ray Long, MD

Connect Your Cuff to Your Core in Forearm Plank

Update on Forearm Plank: 

One of my goals in reviewing the scientific literature is to identify information that can be translated into a practical cues that you can integrate into your practice. With this in mind, I want to call your attention to a new study from the Journal of Strength and Conditioning Research

The investigators showed that drawing the shoulder blades (scapulae) towards the midline (adducting) and tilting the pelvis back and down (retroverting) resulted in greater activation of the rectus abdominis, external oblique, internal oblique and erector spinae muscles. 

Figure 1 shows you the muscles involved in this cue. Engage your rhomboids and middle trapezius to draw your shoulder blades towards the midline. At the same time, engage your glutes and rectus abdominis to retrovert the pelvis. Take a look below at how this fits in with the other cues for forearm plank that I describe below on connecting your cuff to your core!

Figure 1: Adducting the shoulder blades and tilting the pelvis helps to activate your core.

Your wrists are not an area where you want to “work through pain”...

Scientific studies have demonstrated that having a strong core can improve the efficiency of your rotator cuff. A strong and efficient rotator cuff leads to improved stability of your shoulder girdle. This decreases load transfer to your wrists in poses where you bear weight on the hands (like arm balances, Dog Pose and Chaturanga).

Conversely, if your core is weak, or you don’t properly engage it in these types of poses, your cuff is less efficient and your wrists have to bear more of the load. Practicing with imbalances of this nature can lead to a cycle that reinforces the imbalance and, ultimately, injury to the wrist (and shoulders).

The Sanskrit term “Ahimsa” means nonviolence or reducing harm (translation from Nicolai Bachman’s book “The Language of Yoga”). While this term is often used in relation to social ethics, it also applies to how we work with the body.

Reducing the risk of harm to your wrists (and other joints) can include decreasing the frequency and duration of poses that load the wrists and correcting imbalances in the postures. If you have developed wrist pain, you should consult a trained medical professional and work under their guidance. Managing wrist pain almost always includes a period of time off and resting from weight bearing poses, usually combined with some light wrist mobility exercises.

In the interim, I’ve found that Hard Style Plank Pose is a great pose to work on. That’s because it’s awesome for strengthening the core and addressing the underlying imbalance and it doesn’t involve weight bearing on the wrist. Figure 1 illustrates this pose.



Figure 2: Forearm Plank Pose with the posterior oblique myofascial subsystem.

In Hard Style Plank, your weight is on your forearms, with the upper arm bones (the humerus) perpendicular to the floor (in Chaturanga, they are parallel to the floor). Clench your fists to strengthen the muscles that cross the wrists. Then press your forearms into the mat and gently attempt to internally rotate the shoulders. Your forearms are fixed on the mat and don’t actually move. Next, co-contract the external rotators of your shoulders by attempting to externally rotate them. The cue for this is to pretend that your forearms are like windshield wipers that are fixed in place. This co-contracts the subscapularis, infraspinatus and teres minor muscles of the cuff and connects them to your core. Finally, engage the lats and attempt to drag the forearms towards the feet while, at the same time, contracting your abs and gluts. Hold for five to ten seconds and repeat two times. Remember to breathe!

Figure 1 above illustrates the muscles involved here, with color-coding according to the strength of your engagement. Check out the posterior oblique subsystem of the lats, thoraco-lumbar fascia and gluts. Engaging this connection helps stabilize the SI joint. Click here for info and illustrations of side forearm plank and the another myofascial subsystem. Click here and here for more on the gluts and abs connection and the lumbar spine in Chaturanga.

As an aside, soaking your wrists in ice water between sessions of injuring them is a lousy solution; it doesn’t address the underlying imbalances and can lead to more injury. You have to dedicate time off from weight bearing to let your wrists heal, not to the “practice” of injuring them.

An excerpt from "Yoga Mat Companion 4 - Anatomy for Arm Balances and Inversions".

An excerpt from "Yoga Mat Companion 4 - Anatomy for Arm Balances and Inversions".


Thanks for stopping by--I hope you're enjoying learning about biomechanical concepts like the force couple. Stay tuned for the next post when I'll go over the hamstring connection to the pelvis and lumbar. Click here to browse through the Bandha Yoga book series on anatomy, biomechanics and physiology for yoga.


All the Best,


Ray Long, MD



Shoulder Biomechanics, Part III: The Supraspinatus Muscle

Hello Friends,

Let’s cap off the muscles of your rotator cuff with the supraspinatus. This muscle originates in a trough-like area above the scapular spine, hence its name supra, which means “above”. The supraspinatus then inserts onto the greater tuberosity just behind where the long head of the biceps enters the shoulder (figure 1).

(We’ve covered the subscapularis, infraspinatus and teres minor muscles along with some key biomechanical points about each muscle—click to review.)




Figure 1: The supraspinatus muscle of the rotator cuff (with the infraspinatus and teres minor faded).


Contracting the supraspinatus abducts the humerus at the glenoid socket (takes the arm out to the side) for the first 15 degrees. After that, it becomes a synergist of the deltoid for abduction. As with the other muscles of the cuff, the supraspinatus also stabilizes the humeral head in the socket. Figure 2 illustrates this in Warrior II. 


Figure 2: The supraspinatus contracting to synergize the deltoid in abducting the shoulders in Warrior II.


The supraspinatus is the rotator cuff muscle that is most frequently torn. Tears start to become common beyond the age of forty, with an increased incidence in each decade of life. Figure 3 illustrates a supraspinatus rotator cuff tear.



Figure 3: Full thickness tear of the supraspinatus muscle (with the long head of the biceps shown in front of the supraspinatus).


Drawing your arm across the chest (adducting it) stretches the supraspinatus, as well as the capsule of the shoulder and the deltoid muscle. Figure 4 illustrates this action in Garudasana. Note the muscles (colored blue) that contract to stretch the supraspinatus and the muscles that also stretch in this pose (colored red). 


Figure 4: The supraspinatus muscle stretching in Garudasana. The muscles in red are stretching and those in blue are contracting.


Click here to take the rotator cuff quiz to test your knowledge!


An excerpt from "Yoga Mat Companion 1 - Anatomy for Vinyasa Flow and Standing Poses".


An excerpt from "Yoga Mat Companion 4 - Anatomy for Arm Balances and Inversions".

Thanks for stopping by. Stay tuned for the next post when I'll go over the interaction between the deltoid muscle and the rotator cuff. By the end of this four-post series, you'll have a good understanding of the functional anatomy and biomechanics of the shoulder joint as applied to yoga. Click here to browse through the Bandha Yoga book series on anatomy, biomechanics and physiology for yoga.


All the Best,


Ray Long, MD

Shoulder Biomechanics, Part II: The Infraspinatus & Teres Minor Muscles


Hello Friends,

Welcome to the second of the four-part series on the shoulder joint. Last week I discussed the subscapularis muscle, which is the main shoulder internal rotator. Now we’re on to the antagonist muscles of the subscap, namely, the infraspinatus and teres minor. The infraspinatus arises in a trough below the scapular spine, hence its name (“infra” means below). The teres minor arises back part (dorsum) of the scapula along its outer (lateral) border. The infraspinatus and teres minor insert onto the back part of the greater tuberosity of the humerus, as shown in Figure 1. 

These muscles externally rotate the humerus, with the infraspinatus being the strongest external rotator of the joint. The infraspinatus and teres minor also function to stabilize the humeral head in the socket (glenoid).




Figure 1: The infraspinatus and teres minor muscles of the rotator cuff (the supraspinatus is the faded muscle on top).


The Force Couple

These muscles combine with the subscapularis at the front of the joint to form a “force couple”. In this manner, antagonist muscles (for rotation) become synergists (for stability). Therapy (and surgery) for rotator cuff pathology is directed towards restoring this force couple. Click here to read about concept of antagonist/ synergist combinations for the hip muscles in yoga. Click here for some cues to use this in Dandasana.
Figure 2 illustrates this biomechanical process. This view is looking down on the shoulder with the front of the joint towards the bottom of the page



Figure 2: The force couple between the infraspinatus and subscapularis muscles. This view is looking down on the shoulder with the front of the joint towards the bottom of the page.

Poses with the arms in reverse Namaste' stretch the infraspinatus and teres minor, as does Gomukhasana. Those of you who are more flexible may gently press the knife edge of the hand into the back to "load" the external rotators. Folks who are tighter may simply grasp the elbows or hands behind the back. Click here for more details and an animation of Gomukhasana stretching these muscles as well as a not so obvious cue for loading and using PNF for this stretch.

Figure 3: Stretching the infraspinatus and teres minor by internally rotating the shoulders in Parsvottanasana.


Externally rotating the shoulders in poses like Trikonasana (Triangle) can be used to activate the infraspinatus and teres minor. Figure 4 illustrates this, as well as the myofascial connection between these muscles and the muscles that retract the scapula, namely the trapezius and rhomboids.




Click here to take the rotator cuff quiz and test your knowledge!


An excerpt from "Yoga Mat Companion 4 - Anatomy for Backbends and Inversions".


An excerpt from "Yoga Mat Companion 2 - Anatomy for Hip Openers and Forward Bends".

Thanks for stopping by--I hope you're enjoying learning about biomechanical concepts like the force couple. Stay tuned for the next post when I'll go over the last muscle of the rotator cuff, the supraspinatus. Then I'll finish up with the relationship between the rotator cuff and the deltoids. By the end of this four-post series, you'll have a good understanding of the functional anatomy and biomechanics of the shoulder joint as applied to yoga. Click here to browse through the Bandha Yoga book series on anatomy, biomechanics and physiology for yoga.


All the Best,

Ray Long, MD

Shoulder Biomechanics, Part I: The Subscapularis Muscle

Hello Friends,

This is the first of a four-part series on the shoulder joint, focusing specifically on the rotator cuff and its biomechanical relationship with the deltoid muscle. Let's begin by looking at the muscles that comprise the rotator cuff, starting with the subscapularis. As figure 1 illustrates, the subscapularis occupies the space, or fossa, at the front of the scapula. From there it attaches to the lesser tuberosity, a knob-like structure on the humerus bone at the front of the shoulder. Concentrically contracting the subscapularis muscle (shortening the muscle on contraction) internally rotates the shoulder. The subscap also acts, in conjunction with the infraspinatus muscle, as a stabilizer of the humeral head in the socket (glenoid). We test strength and function of this muscle with the "belly press" test or the "bear hug" test. Tightness in the subscapularis can limit external rotation of the shoulder.


Figure 1: The subscapularis muscle, illustrating the origin on the inside of the scapula and the insertion on the lesser tuberosity of the humerus.


Figure 2 illustrates one of the poses that stretch the subscapularis muscle, namely, Gomukhasana. The upper side humerus externally rotates in this pose, thus stretching the muscle as shown.

Figure 2: This illustrates the effect on the subscapularis muscle of the upper arm in Gomukhasana. External rotation of the humerus stretches the muscle.


Figure 3 illustrates engaging the subscapularis muscle in Ardha Baddha Padma paschimottanasana. Advanced practitioners can attempt to lift the hand off the back to engage the muscle in this pose. This also replicates the "lift off" test, which is used in orthopedics to test the function of the subscap muscle.

Figure 3: This image illustrates contraction of the subscapularis muscle to internally rotate the humerus.



Finally, we have the subscapularis as a stabilizer during a static position in a pose. In Warrior II, attempt to internally rotate the shoulders by imagining pressing the mound at the base of the index fingers down against an object. Resist this by externally rotating the shoulders at the same time. Co-contracting opposing muscles--like the subscap and infraspinatus--stabilizes the head of the humerus in the socket while the deltoid contracts to abduct the humerus. Click here to go into a bit more depth on the subject of stabilizing your shoulders in your Downward dog pose. 


Figure 4: Co-contracting the subscapularis and the infraspinatus stabilizes the humeral head in the socket while the deltoid muscle abducts the humerus.



Click here to take the rotator cuff quiz and test your knowledge!

An excerpt from "Yoga Mat Companion 2 - Anatomy for Hip Openers and Forward Bends".


An excerpt from "Yoga Mat Companion 2 - Anatomy for Hip Openers and Forward Bends".


Thanks for stopping by. Stay tuned for the next post when I'll go over the antagonist muscle for the subscapularis. By the end of this four-post series, you'll have a good understanding of the functional anatomy and biomechanics of the shoulder joint as applied to yoga. Click here to browse through the Bandha Yoga book series on anatomy, biomechanics and physiology for yoga.

All the Best!

Ray Long, MD