“. . . according to the Yoga Sutra (3.1), the term [Bandha] refers to the ‘binding’ of consciousness to a particular object or locus (desha), which is the very essence of concentration.”
Georg Feuerstein



Thursday, April 7, 2016

Your Glutes and Lats in Bird Dog Pose

Hello Friends,

Once you learn the individual muscles, then it’s time to look at how they function together during movement and in your asanas. Use your knowledge to develop cues to refine and deepen your poses. Groups of muscles, ligaments and fascia that function together are known as “subsystems”. In this post we examine the posterior oblique subsystem in Bird Dog pose.

The posterior oblique subsystem is comprised of the gluteus maximus on one side of the body and the latissimus dorsi on the other side, with the thoracolumbar fascia between (as shown in the inset illustration). These structures operate synergistically with other groups of muscles, ligaments and fascia, particularly during rotational movements such as a golf swing. 

Figure 1 illustrates how the fibers of the gluteus maximus and opposite side latissimus dorsi run perpendicular to the sacroiliac joint. Co-contracting these two muscles can be used to tension the thoracolumbar fascia, thus stabilizing the sacroiliac joint. Click here to learn more about the thoracolumbar fascia and its important role in core stability.

Bird Dog is an excellent pose for strengthening the core and engaging the posterior oblique subsystem. A good cue for activating the latissimus dorsi muscle in this pose is to straighten the arm forward and then imagine pushing down with the hand against an immoveable object (as shown with the dotted arrow). Alternatively, imagine pulling down on a rope with the forward hand. Combine this isometric contraction of the lats with engaging the gluts on the side of the lifted leg to augment the stabilizing effect on the SI joint.



Figure 1: The posterior oblique subsystem and sacroiliac joint in Bird Dog Pose.


Click here to check our our previous post, "Connect Your Cuff to Your Core in Forearm Plank" and see how this subsystem works in plank pose. With this in mind, what other poses can be used to activate the posterior oblique myofascial subsystem? Place your answer in the comment section below…

Thanks for stopping by--I hope you're enjoying learning about biomechanical concepts like the myofascial subsystems and how they work in your poses. Stay tuned for the next post when I'll go over the hamstring connection to the pelvis and lumbar. Click here to browse through the Bandha Yoga book series on anatomy, biomechanics and physiology for yoga.


All the Best,


Ray Long, MD

Tuesday, April 5, 2016

Connect Your Cuff to Your Core in Forearm Plank

Update on Forearm Plank: 

One of my goals in reviewing the scientific literature is to identify information that can be translated into a practical cues that you can integrate into your practice. With this in mind, I want to call your attention to a new study from the Journal of Strength and Conditioning Research

The investigators showed that drawing the shoulder blades (scapulae) towards the midline (adducting) and tilting the pelvis back and down (retroverting) resulted in greater activation of the rectus abdominis, external oblique, internal oblique and erector spinae muscles. 

Figure 1 shows you the muscles involved in this cue. Engage your rhomboids and middle trapezius to draw your shoulder blades towards the midline. At the same time, engage your glutes and rectus abdominis to retrovert the pelvis. Take a look below at how this fits in with the other cues for forearm plank that I describe below on connecting your cuff to your core!

Figure 1: Adducting the shoulder blades and tilting the pelvis helps to activate your core.

Your wrists are not an area where you want to “work through pain”...

Scientific studies have demonstrated that having a strong core can improve the efficiency of your rotator cuff. A strong and efficient rotator cuff leads to improved stability of your shoulder girdle. This decreases load transfer to your wrists in poses where you bear weight on the hands (like arm balances, Dog Pose and Chaturanga).

Conversely, if your core is weak, or you don’t properly engage it in these types of poses, your cuff is less efficient and your wrists have to bear more of the load. Practicing with imbalances of this nature can lead to a cycle that reinforces the imbalance and, ultimately, injury to the wrist (and shoulders).

The Sanskrit term “Ahimsa” means nonviolence or reducing harm (translation from Nicolai Bachman’s book “The Language of Yoga”). While this term is often used in relation to social ethics, it also applies to how we work with the body.

Reducing the risk of harm to your wrists (and other joints) can include decreasing the frequency and duration of poses that load the wrists and correcting imbalances in the postures. If you have developed wrist pain, you should consult a trained medical professional and work under their guidance. Managing wrist pain almost always includes a period of time off and resting from weight bearing poses, usually combined with some light wrist mobility exercises.

In the interim, I’ve found that Hard Style Plank Pose is a great pose to work on. That’s because it’s awesome for strengthening the core and addressing the underlying imbalance and it doesn’t involve weight bearing on the wrist. Figure 1 illustrates this pose.



Figure 2: Forearm Plank Pose with the posterior oblique myofascial subsystem.

In Hard Style Plank, your weight is on your forearms, with the upper arm bones (the humerus) perpendicular to the floor (in Chaturanga, they are parallel to the floor). Clench your fists to strengthen the muscles that cross the wrists. Then press your forearms into the mat and gently attempt to internally rotate the shoulders. Your forearms are fixed on the mat and don’t actually move. Next, co-contract the external rotators of your shoulders by attempting to externally rotate them. The cue for this is to pretend that your forearms are like windshield wipers that are fixed in place. This co-contracts the subscapularis, infraspinatus and teres minor muscles of the cuff and connects them to your core. Finally, engage the lats and attempt to drag the forearms towards the feet while, at the same time, contracting your abs and gluts. Hold for five to ten seconds and repeat two times. Remember to breathe!

Figure 1 above illustrates the muscles involved here, with color-coding according to the strength of your engagement. Check out the posterior oblique subsystem of the lats, thoraco-lumbar fascia and gluts. Engaging this connection helps stabilize the SI joint. Click here for info and illustrations of side forearm plank and the another myofascial subsystem. Click here and here for more on the gluts and abs connection and the lumbar spine in Chaturanga.


As an aside, soaking your wrists in ice water between sessions of injuring them is a lousy solution; it doesn’t address the underlying imbalances and can lead to more injury. You have to dedicate time off from weight bearing to let your wrists heal, not to the “practice” of injuring them.

Thanks for stopping by--I hope you're enjoying learning about biomechanical concepts like the force couple. Stay tuned for the next post when I'll go over the hamstring connection to the pelvis and lumbar. Click here to browse through the Bandha Yoga book series on anatomy, biomechanics and physiology for yoga.


All the Best,


Ray Long, MD



Saturday, March 19, 2016

Shoulder Biomechanics, Part III: The Supraspinatus Muscle


Hello Friends,

Let’s cap off the muscles of your rotator cuff with the supraspinatus. This muscle originates in a trough-like area above the scapular spine, hence its name supra, which means “above”. The supraspinatus then inserts onto the greater tuberosity just behind where the long head of the biceps enters the shoulder (figure 1).

(We’ve covered the subscapularis, infraspinatus and teres minor muscles along with some key biomechanical points about each muscle—click to review.)




Figure 1: The supraspinatus muscle of the rotator cuff (with the infraspinatus and teres minor faded).


Contracting the supraspinatus abducts the humerus at the glenoid socket (takes the arm out to the side) for the first 15 degrees. After that, it becomes a synergist of the deltoid for abduction. As with the other muscles of the cuff, the supraspinatus also stabilizes the humeral head in the socket. Figure 2 illustrates this in Warrior II. 


Figure 2: The supraspinatus contracting to synergize the deltoid in abducting the shoulders in Warrior II.


The supraspinatus is the rotator cuff muscle that is most frequently torn. Tears start to become common beyond the age of forty, with an increased incidence in each decade of life. Figure 3 illustrates a supraspinatus rotator cuff tear.



Figure 3: Full thickness tear of the supraspinatus muscle (with the long head of the biceps shown in front of the supraspinatus).


Drawing your arm across the chest (adducting it) stretches the supraspinatus, as well as the capsule of the shoulder and the deltoid muscle. Figure 4 illustrates this action in Garudasana. Note the muscles (colored blue) that contract to stretch the supraspinatus and the muscles that also stretch in this pose (colored red). 


Figure 4: The supraspinatus muscle stretching in Garudasana. The muscles in red are stretching and those in blue are contracting.


Click here to take the rotator cuff quiz to test your knowledge!

Thanks for stopping by. Stay tuned for the next post when I'll go over the interaction between the deltoid muscle and the rotator cuff. By the end of this four-post series, you'll have a good understanding of the functional anatomy and biomechanics of the shoulder joint as applied to yoga. Click here to browse through the Bandha Yoga book series on anatomy, biomechanics and physiology for yoga.


All the Best,


Ray Long, MD